NTMS4700N

Power MOSFET

30 V, 14.5 A, Single N-Channel, SO-8

Features

- Ultra Low R_{DS(on)} (at 4.5 V_{GS}), Low Gate Resistance and Low Q_G
- Optimized for High Side Control Applications
- High Speed Switching Capability

Applications

- Notebook Computer Vcore Applications
- Network Applications
- DC-DC Converters

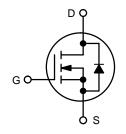
MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating			Symbol	Value	Unit
Drain-to-Source Voltage			V_{DSS}	30	V
Gate-to-Source Voltage - Continuous			V_{GS}	±20	V
Continuous Drain	Steady	$T_A = 25^{\circ}C$	I _D	11.5	Α
Current (Note 1)	State	T _A = 70°C		9.2	
	t ≤10 s	T _A = 25°C		14.5	
Power Dissipation (Note 1)	Steady State	T _A = 25°C	P _D	1.56	W
	t ≤10 s]		2.5	
Continuous Drain		$T_A = 25^{\circ}C$	I _D	8.6	Α
Current (Note 2)	Steady	T _A = 70°C		6.8	
Power Dissipation (Note 2)	State	T _A = 25°C	P _D	0.86	W
Pulsed Drain Current	tp = 10 μs		I _{DM}	40	Α
Operating and Storage Temperature			T _J , T _{stg}	–55 to 150	°C
Source Current (Body Diode)			IS	2.5	Α
Single Pulse Drain–to–Source Avalanche Energy (V_{DD} = 25 V, V_{GS} = 10 V, I_{PK} = 7.5 A, L = 10 mH, R_G = 25 Ω)			E _{AS}	280	mJ
Lead Temperature for Soldering Purposes (1/8 in from case for 10 s)			TL	260	°C

THERMAL RESISTANCE RATINGS

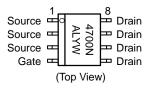
Rating	Symbol	Value	Unit
Junction-to-Lead - Steady State	$R_{ heta JL}$	16	°C/W
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	80	
Junction-to-Ambient - t ≤10 s (Note 1)	$R_{\theta JA}$	50	
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	145	

- Surface-mounted on FR4 board using 1 in sq. pad size
- (Cu area 1.127 in sq. [1 oz] including traces).


 2. Surface–mounted on FR4 board using minimum recommended pad size (Cu area 0.412 in sq.).

ON Semiconductor®

http://onsemi.com


V _{(BR)DSS}	R _{DS(on)} TYP	I _D MAX	
30 V	6.0 mΩ @ 10 V	14.5 A	
30 V	7.3 mΩ @ 4.5 V	17.5 A	

MARKING DIAGRAM/ PIN ASSIGNMENT

SO-8 CASE 751 STYLE 12

4700N = Specific Device Code = Assembly Location

= Wafer Lot = Year = Work Week

ORDERING INFORMATION

Device	Package	Shipping†
NTMS4700NR2	SO-8	2500/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_{.J} = 25°C unless otherwise noted)

Characteristic	Symbol	Test Condition	on	Min	Тур	Max	Unit
OFF CHARACTERISTICS	•	-			<u>-</u>	<u>-</u>	-
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 2$	250 μΑ	30			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				18		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 \text{ V}, V_{DS} = 24 \text{ V}$ $T_{J} = T_{J} $	$T_J = 25^{\circ}C$			1.0	μΑ
		$V_{GS} = 0 \text{ V}, V_{DS} = 24 \text{ V}$	T _J = 125°C			50	
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{GS} =$				±100	nA
ON CHARACTERISTICS (Note 3)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 2$	250 μΑ	1.0		3.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				5.0		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 4.5 V, I _D =	= 10 A		7.3	10	mΩ
		V _{GS} = 10 V, I _D =	: 13 A		6.0	7.2	1
Forward Transconductance	9FS	V _{DS} = 15 V, I _D =	: 10 A		25		S
CHARGES, CAPACITANCES AND GATE R	ESISTANCE				•		•
Input Capacitance	C _{ISS}				1600		pF
Output Capacitance	Coss	V _{GS} = 0 V, f = 1.0 MHz	, V _{DS} = 24 V		700		
Reverse Transfer Capacitance	C _{RSS}				200		1
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V}, I_{D} = 10 \text{ A}$			16		nC
Threshold Gate Charge	Q _{G(TH)}				3.0		1
Gate-to-Source Charge	Q _{GS}				5.0		
Gate-to-Drain Charge	Q_{GD}				7.0		
Gate Resistance	R_{G}				0.8		Ω
SWITCHING CHARACTERISTICS, V _{GS} = 4.	5 V (Note 4)					ı	1
Turn-On Delay Time	t _{d(ON)}				15		ns
Rise Time	t _r	Vcc = 45 V Vcc	= 15 V		55		1
Turn-Off Delay Time	t _{d(OFF)}	$V_{GS} = 4.5 \text{ V}, V_{DD} = 10 \text{ A}, R_G = 10 \text{ A}$	3.0 Ω		20		
Fall Time	t _f				13		
DRAIN-SOURCE DIODE CHARACTERISTI	cs					<u>I</u>	
Forward Diode Voltage	V _{SD}		T _J = 25°C		0.75	1.0	V
		$V_{GS} = 0 \text{ V}, I_S = 2.5 \text{ A}$ $T_J = 125^{\circ}\text{C}$		0.55		1	
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 \text{ V, } d_{ISD}/d_t = 100 \text{ A/}\mu\text{s,}$ $I_S = 10 \text{ A}$			40		ns
Charge Time	t _a				18		1
Discharge Time	t _b				22		1
Reverse Recovery Charge	Q _{RR}				36		nC

Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

TYPICAL PERFORMANCE CURVES

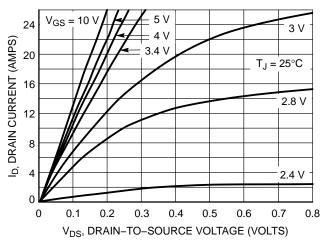
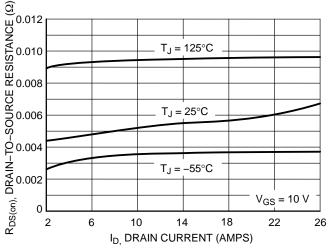



Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

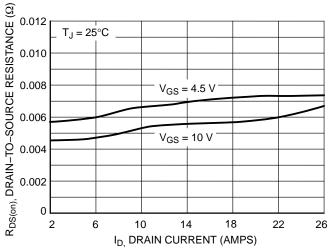


Figure 3. On–Resistance vs. Drain Current and Temperature

Figure 4. On–Resistance vs. Drain Current and Gate Voltage

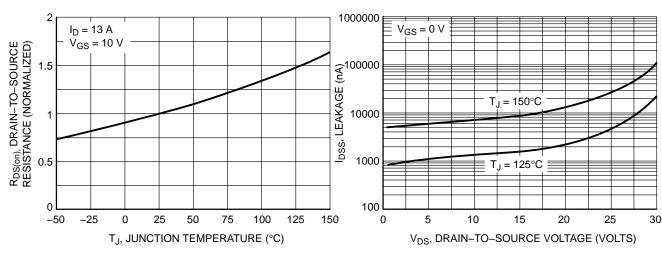
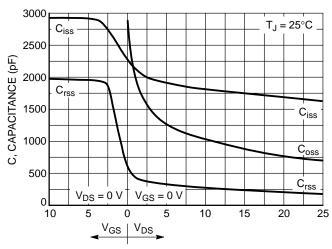



Figure 5. On–Resistance Variation with Temperature

Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL PERFORMANCE CURVES

GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (VOLTS)

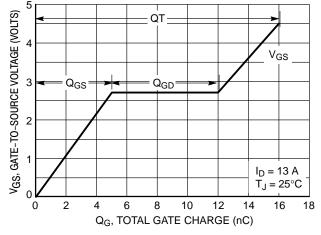


Figure 8. Gate-To-Source and Drain-To-Source Voltage vs. Total Charge

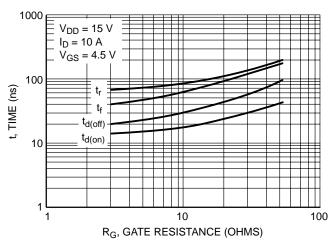


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

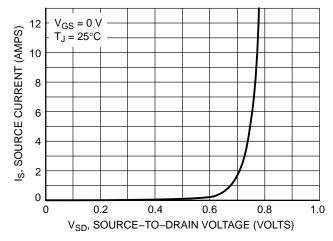
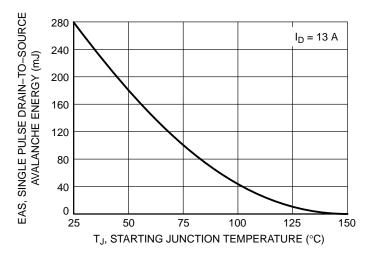
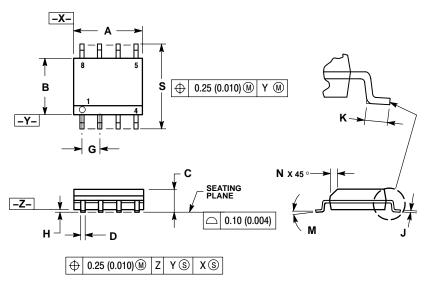
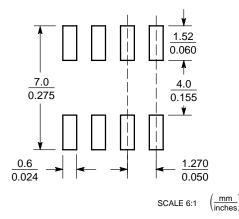


Figure 10. Diode Forward Voltage vs. Current


Figure 11. Maximum Avalanche Energy vs. Starting Junction Temperature

PACKAGE DIMENSIONS

SO-8 CASE 751-07 **ISSUE AB**

SOLDERING FOOTPRINT*

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
- 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
- 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
- PER SIDE.

 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

 6. 751–01 THRU 751–06 ARE OBSOLETE. NEW STANDARD IS 751–07.

	MILLIMETERS		INCHES			
DIM	MIN	MAX	MIN	MAX		
Α	4.80	5.00	0.189	0.197		
В	3.80	4.00	0.150	0.157		
С	1.35	1.75	0.053	0.069		
D	0.33	0.51	0.013	0.020		
G	1.27 BSC		0.05	0 BSC		
Н	0.10	0.25	0.004	0.010		
J	0.19	0.25	0.007	0.010		
K	0.40	1.27	0.016	0.050		
М	0 °	8 °	0 °	8 °		
N	0.25	0.50	0.010	0.020		
S	5.80	6.20	0.228	0.244		

STYLE 12: PIN 1.

SOURCE

- SOURCE SOURCE 2.
- 3.
- GATE
- 5. 6. 7. DRAIN DRAIN
- DRAIN
- DRAIN

NTMS4700N

www.DataSheet4U.com

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free LISA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.